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Theory and observations of waves on hollow-core vortices 
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A linear non-homogeneous analysis is presented for the standing waves produced on 
the hollow core of an irrotational vortex by an arbitrary obstacle on the wall of the 
tube containing the vortex. The group-velocity criterion based upon Kelvin's corres- 
ponding dispersion relation predicts whether a certain asymptotic wave pattern 
appears upstream or downstream of the obstacle. The analysis leads to amplitude 
singularities for the standing waves at certain critical radii of the core. The particularly 
interesting case of a counter-helix forwhich the wave energy is propagating upstream 
appears for a first-mode angular disturbance. For this situation it seems to be powible 
that the helix ends in a hydraulic jump and is continued bya counter-helixdownstream, 
as the core size gradually diminishes due to the deceleration of the flow caused by 
viscous effects (not included in the analysis). The capillary-wave pattern produced by 
surface tension is also considered. A brief outline for the analogous wave problem is 
given for the case where the fluid rotates like a rigid body. 

Photographic observations of hollow-core vortices in water flow are presented 
which confirm the qualitative predictions of the analysis, both for the response to an 
axisymmetric area contraction and also to a 90" bend a t  the downstream end of the 
vortex tube. 

1. Introduction 
The present work was motivated by observations made in the course of experiments 

concerned with the structure of vortex flow in a jet-driven vortex tube (Escudier et al. 
1980). At sufficiently high flow rates the pressure in the vortex core becomes low 
enough for cavitation to occur, the fluid medium being water. It was observed that, 
when the vortex so produced passes into a contraction, the diameter of the hollow 
core increases and the core surface develops a well-defined varicose wavy structure. 
The increase in core diameter, perhaps at  first sight surprising, can be explained by 
elementary arguments (Escudier 1979). The wave behaviour on the other hand, which 
is analogous to that of surface gravity waves and therefore to be expected, is much 
more difficult to analyse. 

The problem of wave propagation on a hollow irrotational vortex in a fixed cylin- 
drical tube was first studied by Kelvin ( 1  880). Using the Eulerian equations he derived 
the general dispersion relation for waves supported by centrifugal forces. A related 
problem was investigated by Binnie (1964), who considered waves on hollow swirling 
water jets, in which the surface tension and centrifugal forces balance. It is interesting 
to note that the dispersion relation derived by Binnie is, apart from a quadratic 
factor in the wavenumber, identical with Kelvin's dispersion relation for the special 
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case of axial symmetry. The analysis of the present paper discusses standing waves 
produced on the free surface of the core of an irrotational vortex contained in a tube 
by a disturbance a t  the wall of the tube. 

The diameter of the hollow core is determined by the cavitation pressure of the 
liquid which forms the vortex, or by the air pressure of a reservoir to which the vortex 
tube is connected. Assuming the flow to be irrotational and incompressible and ignoring 
effects due to the gas flow in the core the standing-wave pattern corresponding to a 
specified disturbance is calculated. For completeness the effects of surface tension are 
included, although in most cases they are of little importance. 

The present non-homogeneous problem is closely related to that of standing gravity 
waves behind an obstacle in a river (see, for example, Whitham 1974). As the analysis 
given is linear, consideration is restricted to both small wave amplitudes and small 
disturbances a t  the wall. However, if an exact knowledge of the wave amplitudes is 
not needed, the second simplifying assumption can be dropped and it is then justified 
to apply the present ideas to the wave field behind a strong contraction or in front of 
a bend in the tube. As only asymptotic wave patterns are discussed, the radiation 
conditions have to be considered separately. Thus we can predict whether a certain 
wave pattern will appear upstream or downstream of an obstacle. 

In the course of the development of the analysis, it  became apparent that wave 
forms other than axisymmetric were to be expected for non-axisymmetric disturbances, 
and this was subsequently confirmed by experiment. Photographs are presented of 
the waves produced on hollow vortex cores by axisymmetric and non-symmetric 
disturbances, and wavelengths determined from the photographs are compared with 
the predictions of the analysis. 

2. Analysis 

for the radial velocity a t  the wall in cylindrical co-ordinates (x, r ,  0) 
It is convenient to assume a concentrated disturbance produced by the obstacle 

w,(x, r,, 0) = au,6(x) cos n0, (1) 

where 6 is Dirac's delta function, uo the mean axial flow speed, n an integer, a a 
constant with an absolute value which is small compared with unity, and rt the radius 
of the tube. This leads to a Green's function, from which the solution for a general 
disturbance 

W 1 + 6(x - y) . C [gn(y) cos n0 + hn(y) sin riel dy 
J -03 n=O 

is found by superposition. 
First, the equilibrium of the undisturbed flow must be examined. Since the motion 

is taken to be irrotational, the tangential velocity at radius r is given by v, = I'/(2m), 
where the circulation integral r is a constant. The outer radius of the vortex is equal 
to the radius of the tube r, and the inner radius (i.e. the core radius) is denoted by rc. 
Hence the velocity potential can be written in the form 

r 
#(x, r ,  0) = u0x + - 0 + ~ ( x ,  r ,  0), 

2n (3) 
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where x accounts now for the disturbance from the wall. To determine the boundary 
condition on the core we describe the free surface by f(x,  r ,  8) = ~ ( x ,  8)  + rc - r = 0. 
Making use of 

af 8.f ve af  vz-+vr-+- - = 0 on f ( x , r , 8 )  = 0, 
ax ar r a0 

we find, to first order in 7, 

A second condition can be obtained from Bernoulli’s equation 

(4) 

where pa, pc,  p ,  and p denote the stagnation pressure, the core pressure, the pressure 
due to  surface tension and the density, respectively. Having determined the curvature 
of the free surface, we obtain to  first order 

where P, is the pressure due to  surface tension for the undisturbed case and y the 
kinematic surface tension. Introducing (7) into (6) and equating the first-order terms 
in (6) leads to  

at r = re. 
The velocity-potential disturbance x bas to  satisfy Laplace’s equation 

AX = 0. (9) 

With this and the boundary conditions (I), (5) and (8) the problem is completely 
defined. 

As pointed out by Whitham (1974), care is needed when solving steady wave prob- 
lems by transforms in the application of a suitable radiation condition to ensure 
uniqueness. The non-uniqueness is a consequence of assuming a steady-state solution 
without regard for its evolution. A convenient technique to overcome this problem 
is t o  use the artifice of Whitham, whereby the steady-state problem is replaced by a 
time-dependent one, thereby introducing a causality requirement. Thus, in the present 
case the boundary condition ( 1 )  is replaced by 

vu,(x, rt, 8; t )  = olu06(x) cos no. exp A .  0 , A > 0. ( 3 
This expression defines the more realistic problem of a source which was initially 
(i.e. a t  t = - 00) effectively zero and gradually grew until i t  reached its current strength 
(at t = 0). Once this problem is solved, the limit A + 0 yields the steady-state solutions. 
Equations (5) and (8) are extended correspondingly to their time-dependent forms by 
simply adding the terms @/at and ax/at, respectively. 
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It is then easy to show that the appropriat,e forms for x and r] representing varicose 
disturbances are 

~ ( z ,  r ,  0; t )  = exp ( A .  - u‘) 1 +m ( [ A  ( k )  In( kr )  + B( k )  Kn(  kr)] einO] 
- m  

+ [C(k)  In(kr) + D(k)  K,(kr)] ,-ins]} eikxdk ( 1 1 )  

and 
r(z,  0; t )  = ( E ( k )  eine + F ( k )  ecinO} e ikxdk.  

iuo - m  

For convenience we introduce the following substitutions 
n 

R = rc/r t ,  z = x / rc ,  

u(5) = P 2 + 7 . [ ( n 2 -  Y 1)+5”. 
a 0  r c  

Note tha t  u is a constant when the effects due to surface tension can be ignored. 
Introduction of (11) and (12) into the relations defining the boundary conditions 

leads to the transforms A ,  B,  C ,  D ,  E and F.  Inserting the solutions for E and F in 
(12), breaking the integral into the ranges k > 0 and k < 0 and using 5 as the variable 
of integration in each, we obtain 

where 

and use has been made of the symmetry relations 

vn(5)  = - V,( - 5) and wn(5) = wn( - 5). 
The role of A is now clear. The fact that the imaginary parts appearing in the 

denominators of the integrands of the expression (18) are strictly different from zero 
excludes the possibility of singularities on the path of integration. 

3. Dispersion relation 

dispersion relation 
It is straightforward to introduce harmonic time dependence and to arrive a t  the 

[ - ~ E + j , n g I 2 . V , ( 5 ) + ~ . 5 . ~ ( 5 )  = 0. (21) 

This is identical with Kelvin’s dispersion relation when y = 0 and, in the limit A --f 0, 
is also identical with the denominators of the integrands on the right-hand side of 
(18) when o / k  = -uo. On the other hand this is just the phase-speed condition for 
standing waves 

c w / k  = - UO 3 (22) 
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i.e. for the only waves tha$ can keep up with the obstacle a t  the wall of the tube and 
appear steady when viewed from a fixed position in the laboratory frame of reference. 
The group velocity is defined by C = aw/ak. From (21) we have 

where 

1 if x > 0, 

0 if x = 0, 

-1 if z<O.  

When c = uo and C > - uo the wave pattern will appear downstream of the cbstacle, 
whereas for C < -uo it  will appear upstream. It is important to note that only the 
real roots of (22), i.e. in the limit A -+ 0 the real poles of the integrands of (18), con- 
tribute to  the (far-field) asymptotic wave pattern. Everything else contributes only 
to the transitional behaviour of the wave field near the obstacle (near field). 

4. Solutions 
To show how solutions are constructed we consider first the case of an axisymmetric 

source. Since A -+ 0 ultimately, terms which have arisen from the time dependence 
of the boundary condition (10) and are no longer needed to evaluate the integrals in 
(18), can now be dropped. Thus if n = 0, equation (18) becomes 

where K(5) = IO(0 Kl(5/R) + 4(5 /R)  Ko(5), 

K(5) = 4 ( 5 )  Kl(C/R) - 4(E/R) Kl(tL 
Having noted that V,([)  is strictly positive and W,(c) strictly negative if n is a non- 
negative integer, and that 0 < R < 1 and t > 0, it  is easy to see to which side of the 
real axis the poles of the integrands of (18) have been shifted into the complex plane 
due to the appearance of A. In  this section we exclude consideration of capillary 
waves, and to avoid unnecessary complications set y = 0. In this case the dispersion 
relation which corresponds to the denominators of the integrands in (24) has exactly 
one (simple) zero 5 = 5o(R,P) (25) 

if < RAP) (26) 

and no zero otherwise; here R, is a critical ratio of radii. The corresponding pole of 
the first integrand ( j  = + 1) in (24) appears in the upper complex half-plane (i.e. with 
positive imaginary parts of [) and the pole of the other integrand ( j  = - 1) is in the 
lower half-plane. The paths of the two integrals can now be rotated into the upper 
and the lower half-planes, respectively, such that no poles appear in the integrands. 
Thus both poles corresponding to the zero (25) contribute and the remaining parts 
of the integrals decay exponentially as z -+ GO and are now neglected as we are interested 
only in the asymptotic behaviour of the solutions (far field). The asymptotic solution is 

~ ( x )  = 2aa cos to. - , ( 3 (27) 
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FIGURE 1. Logarithm of the relative wave amplitude a uersus the ratio of radii R for ra = 0 
and the following values of K (delined by equation (30)): 1, 1.208; 2, 0.879; 3, 0.549; 4, 0.396; 
5, 0.220. 

where 

which represents a sinusoidal chain of cells. For consistency with the experimental 
study, we consider the specific case of a hollow-core vortex produced by a tangential 
inlet at the upstream end of the vortex tube. Thus, making use of the continuity 
equation, it is easy to see that for a fixed geometry 

I-Rz 
P-- R .  

Hence the parameter for the solutions should be 

The relative amplitude a versus the ratio of radii R is shown in figure 1 for five 
different values of K, which correspond to  the parameters chosen for the experiment 
plus the limiting case of an infinitesimal disturbance. The corresponding values of 
f = f o  are plotted in figure 2. Finally the group velocity C is shown in figure 3. It is 
interesting to note that, when R approaches R,, f approaches zero (i.e. the wavelength 
becomes infinitely long), the amplitude a becomes infinitely large and C approaches 
- uo. It is not surprising that the amplitude becomes very large as C -+ - uo, because 
in this case the wave energy produced is trapped in place. As the present analysis is 
linear and does not account for dissipative mechanisms it predicts a singularity for 
a which should be interpreted in the same way as the usual amplitude singularity in 
a resonance problem. 

The case n = 1 can be discussed similarly. The theory again leads to a critical ratio 
of radii R,. For R > R, the integrands of the first two integrals in (18) (i.e. j, = & 1, 
j, = + 1)  contain two poles each, corresponding to the two zeros of the dispersion 
relation (21) forj, = + 1, and for R > R, these integrands are regular. The integrands 
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4 

R 

FIGURE 2. Relative wavenumber E (defined by equation (14)) v e r w  R for n = 0 
and the same values of K as in figure 1 .  

R 

FIGURE 3. Ratio of group velocity and flow speed versus Iz for m = 0 
and the same values of K as in figure 1. 

of the second two integrals (i.e. j, = rf: 1, j, = - 1)  contain two such poles for all 
values of R;  both pairs of poles contribute. Consequently, we find 

for the asymptotic wave pattern, provided R > Re. This represents a superposition 
of two helices. The group velocity criterion shows again that both of the waves which 
correspond to  the terms on the right-hand side of (31) appear downstream of the 
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0 0.2 0.4 0.6 0.8 1 .o 
R 

FIQURE 4. Relative wave amplitude a verszcs R for 12 = 1 and the following values of K :  1, 
1.208; 2, 1.692; 3, 2.538. The four solution branches are: -..-.. 9 all; ------ , a12 ; -, apl ; 

9 aze' -._ 

obstacle (for all values of R). When R < R, two additional waves appear. The one 
with the longer wavelength appears upstream of the obstacle, the other downstream. 
Hence, we have 

~(z, 8) = - 2aa,, cos (tll x / r ,+  8) upstream, (32) 

and ~ ( x ,  8) = 2aa,, cos (t12 x / rC  + 8) + q z ( x ,  8) downstream. (33) 

Expression (32) represents a pure counter-helix whereas (33) is a superposition of a 
counter-helix and two helices. The quantities a, f ;  and C versus R are shown in figures 
4, 5 and 6, respectively. Similar amplitude singularities as were observed previously 
now appear for a,, and aI2. Again in both cases the corresponding group velocities 
approach - u,, as R -+ R,. 

For the special case n = 0 it  is possible to find an analytical relation between /3 
and the critical ratio of radii. Resonance occurs when the dispersion relation (21) 
(for n = 0) contains a second-order (or higher-order) zero at  f ;  = 0. It is easy to show 
that this can only happen if 
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0 0.2 0.4 0.6 0.8 1.0 

R 
FIGURE 5. Relative wavenumber E versus R for n = 1 and the 

same solution branches and values of K as in figure 4. 

Hence we obtain from (12) and ( 14) 

3 
( 1  -2RE) ' 

-- -RE. - r 
2mt. uo (34) 

which is in agreement with the numerical results, and introducing (34) in (23) leads 

A similar simplification is possible for capillary waves as is seen in the following 
to c = uo. 

section. 

5. Capillary waves 
Capillary waves appear owing to surface tension. The dispersion relation ( 2 1 )  shows 

that their wavelengths are usually very small as the kinematic surface tension for 
most liquids is low (e.g. for water: y = 7.4 x m3 s-2). Hence, we have approxi- 
mately, using the asymptotic forms of the modified Bessel functions, 
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and 
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FIGURE 6. Ratio of axial group velocity and flow speed verms R for n = 1 
and the same solution branches and values of K as in figure 4. 

The dispersion relation (2 1 ) simplifies to 

From ( 18) we see that the amplitudes of the standing capillary waves are particularly 
large when 1 - R < 1. When (37) is multiplied by t2 and differentiated with respect to 
( we obtain 

1-R 1-R 1-R 
2 [ .- - + j2np ]'[-:]=&'I 3t2tanh ( c- R ) +c3- R [l-tanhz(cT)])' 

This shows that any capillary-wave pattern will appear upstream of the obstacle 
only, provided 

n < t / 3 P .  (38) 

When n < t / p  and [(I - R) /  R 8 1 the wavenumber is given approximately by 

k = UVY. (39) 
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6. Rotation as a rigid body 
The only simple case of vortical flow which can be discussed in a similar manner to 

the irro&ational vortex is that where in the undisturbed case the fluid rotates as a 
rigid body and moves a t  uniform axial speed, i.e. the undisturbed flow is defined by 

v, = uo = const., v, = 0, 

and vg = Rr for rc < r < rt .  (40) 

As the flow is no longer irrotational, the velocity components cannot be expressed as 
derivatives of a velocity potential. However, Batchelor (1967, Q 7.5) has derived an 
equation for the stream function for axisymmetric flow which can be used instead of 
Laplace’s equation for the velocity potential : 

where 

Following Batchelor we use the departure of the stream function from its undisturbed 
form as the dependent variable 

Y ( x ,  r )  = +u0r2 + rF(x, r ) .  (43) 

When this is introduced into (41) we obtain 

In addition to the previous substitutions we define 

P = Qr,/uo, (45) 

f -  = (4P2- 6% (46) 

<+ = (f2--4/32)*. (47) 

As the flow is assumed to  be axisymmetric the boundary condition ( 1 )  is reduced to 

v, = au,&(z) at r = rt ,  

and the conditions ( 5 )  and (8) on the free surface of the hollow core have to be replaced 

a7 aF 
u -+-= 0 at r = r ,  

Oax ax 

and u o ( ~ ~ + ~ ) - - ~ 2 r c q = 0  at r = r c 7  (49) 

respectively. Following all the  steps of the previous analysis leads to the  solution 
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for the displacement of the surface, whereby the interpretation of these integrals 
should be such that all poles on the positive real axis contribute. Note that (50) has 
essentially the same form as (18) for the axisymmetric case n = 0. The discussion of 
this result is similar to  that already given for the irrotational vortex and is therefore 
not repeated. An interesting difference, however, is the fact that resonance now appears 
at  finite wavelengths. 

The dispersion relations are 

w2k-[Jl( k r t )  Yo(k- r,) - Jo( k- T,) Yl( k- rt ) ]  

+ (kn)2r,[Jl(k-r t )~(k-r , )  -4(krc)Yl(k-r t ) l  = 0 (51) 
i f w  > 252, 
and 

w 2 k + [ W + r t )  Ko(k+rc) + Io(k+rc) K,(k+rt)l 
- (fiQ)2rcr4(fi+rt) K l ( f i + Y C )  -4( f i+r , )  &(k+rt)I = 0 (52)  

if w < 2Q; 

where k- = [ 1 - ( 2 R / ~ ) ~ ] 4 .  k (53) 

and k+ = [ ( ~ Q / u ) ~ -  l14.k. (54) 

In this context reference should be made to the extensive work on inertia waves 
presented by Greenspan (1968) and Batchelor (1967), which is closely related to the 
present problem. 

7. Concluding remarks regarding the analysis 
As the present analysis is linear and for the most part neglects viscous effects, its 

application is restricted in several respects. In  order to keep the angular shear stress 
of the undisturbed flow within appropriate limits (to produce approximately potential 
flow) the value of R should not be too small. On the other hand, as was mentioned in 
the first section, the wave amplitudes should not be too large, a restriction which is 
particularly important when R is close to  a critical ratio of radii. In  this context a 
very interesting aspect of the viscous flow should be discussed briefly. Due to boundary- 
layer friction a t  the wall, we expect the flow to be decelerated downstream. Conse- 
quently, the core radius should diminish in the downstream direction. In  this case it 
is possible that R > R, for x < xc 

and R < Rc for x > xc, 

where x = xc refers to the axial position where the critical ratio of radii is reached. 
For the special case n = 1 there is the possibility that a helix going with the flow ( T ~ )  
appears for x < xc and a helix going against the flow (counter-helix: yll) for x > xc. 

Thus, wave energy wouId propagate upstream for x < x,. Consequently, a very 
strong dissipative mechanism has to balance the energy flow coming from both sides 
towards xc and it is anticipated that a hydraulic jump will appear a t  xc. 

Another interesting feature of waves supported by centrifugal forces is the fact 
that 7 contains the ratio of velocity components as a parameter onIy (see equation 
(24)) and not the actual velocities, whereas for capillary waves the absolute values of 
the velocity components are important. Hence, it is possible to  distinguish the two 
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t- 
L,, = 425 mm 

P 4 - l H  Outlet contraction 

FIQURE 7. Schematic diagram of vortex tube. 

types of waves experimentally. When /3 is kept constant, high-velocity flow produces 
capillary waves with small wavelengths, and with diminishing flow speed the wave- 
lengths increase. Waves supported by centrifugal forces on the other hand do not 
change their lengths when /3 remains unchanged. Even though there are cases where 
we cannot expect good agreement of the amplitudes predicted by the present analysis 
with experimental data, the amplitude information is still very valuable, as it predicts 
at least the domains of R where reasonably large amplitudes are to be expected. Finally, 
it  should be noted that boundary condition (1)  represents approximately a sudden 
contraction of the tube for n = 0 and a sudden displacement of its axis for n = 1.  

8. Flow apparatus 
The flow apparatus employed for the experiments is shown schematically in figure 7. 

A vortex flow is created as the result of tangential inflow of water into the main vortex 
tube. This Plexiglas tube, together with an inlet header and a contraction upstream 
of the inlet slit, form part of a gravity-fed water circuit in which for the present 
experiments the flow is recirculated. The maximum attainable flow rate is typically 
a few litres per second, but varies with the geometric configuration under investigation, 
and may be regulated by valves upstream and downstream of the vortex tube. 

The tube diameter D = 55 mm, and the inlet slit has a width t = 8 mm and an 
open length I, which can be varied up to a maximum of 425 mm. Plexiglas exit con- 
tractions 83 mm in length and with inside diameters 2r, = 40, 25, 18 and 10 mm can 
be installed at any axial location within the tube (see figure 7) ,  so producing an 
essentially axisymmetric disturbance to the vortex flow. Although some asymmetry 
results from the tangential inlet slit, this turns out to be of minor significance for the 
experiments with these outlet contractions, where the area change is between 47 % 
and 97 yo. The response of the vortex to a strongly asymmetric disturbance in the 
form of a 90" elbow at the tube outlet is also investigated. 

Except for the case with the 10 mm contraction installed, a hollow vortex core is 
always produced in our apparatus a t  the highest flow rates by gaseous cavitation, 
the water used having a relatively high air content. Such a core can also be produced 
under most flow conditions (including 2r, = 10 mm) by injecting air into the flow 
through a hole a t  the centre of the end wall of the vortex tube. For very low flow rates 
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this is no longer possible as the core breaks up under the buoyancy forces which then 
dominate. With air injection, the diameter of the core can be varied as desired, a 
smaller equilibrium value being reached when the air supply is shut off owing to 
gradual expulsion of the excess air. 

Illumination for the photographs is provided by diffuse reflexion of the light of two 
flashguns from a white screen behind the tube, thereby achieving short exposure times 
and avoiding spurious reflexions whilst at the same time leaving the inner boundary 
of the hollow core clearly visible. For the camera set-up employed here, refraction a t  
the outer surface of the vortex tube results in the core diameter appearing to be about 
25 % larger than is actually the case. 

9. Experimental results 
(a) Axisymmetric disturbance - contraction 

The response of hollow vortex cores to the various contractions is shown by the 
photographs in figures 8 to 11 (plates 1-4). In  each case, the photographs cover a range 
of core diameters. The thick vertical band to the left marks the start of the contraction 
and the slender vertical ellipse at the right the outlet to the plenum chamber. 
The wavy surface produced by such a contraction is seen to be essentially varicose 
in shape with a slight helicity in the same sense as that of the outer swirling flow. 
Especially for the two smaller contractions, both the wavelength and the wave am- 
plitude increase strongly with increase in the core diameter, until a limiting (or cri- 
tical) size is reached at which the wavelength is so long that the core in the contraction 
is essentially cylindrical. For 2r, = 25 and 40 mm, photographs are shown for both 
maximum and reduced flow rates, the only difference being in the appearance of 
the core surface which changes from rough to smooth as the flow rate is reduced. 
This effect is consistent with the corresponding increase in the wavelength of the 
capillary waves, as discussed in 5 5. 

Data for the wavelength-core-size relationship, deduced from numerous photo- 
graphs similar to those of figures 8 to 11, are plotted in figure 12 together with curves 
representing the predictions of the analysis (figure 2 ) .  The values of the parameter K 

for 2rt = 40, 25, 18 and 10 mm are 0.88, 0.55, 0-40 and 0.22, respectively and corres- 
pond to the values associated with curves 2,  3,  4, and 5 of figure 2,  respectively. 
Qualitative agreement of the observations discussed above is clearly evident in spite 
of systematic deviations between the data’and the theoretical curves and also a high 
degree of scatter in the data themselves. The most obvious tendency for a given core 
diameter is for the computed wavelength to be shorter than observed, a trend which 
becomes the more pronounced as rt is decreased. The explanation for this discrepancy 
may lie in the fact that the hollow core is surrounded by a sheath of turbulent fluid 
in almost solid-body rotation (Escudier et al. 1979) rather than potential-vortex flow 
as assumed in the analysis. It is also the case that for 2r, = 40 mm the contraction is 
rather short compared to the wavelength so that measurements can only be made in 
the ‘near field’ where application of the analysis is of doubtful value (nevertheless, 
the closest agreement between the theory and the measurements is for 2r, = 40 mm). 
It is also evident from the photographs that the wave amplitudes are much larger in 
most cases than is appropriate for comparison with a linear theory. 
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R 

FIGURE 12. Wavelength-core-size relationship for axisymmetric disturbances. Solid curves from 
the analysis for values of exit diameter 2r, indicated. Experimental data correspond to the exit 
diameters: 0, 10 mm; ., 18 mm; A, 25 mm; .,40 mm. 

(b)  Asymmetric disturbance - 90" elbow 

The series of photographs in figure 13 (plate 5) shows the appearance of the vortex core 
for maximum flow (5.2 1 s-l) through the vortex tube fitted with a 90" elbow at 
its downstream end. The pieces used to  block off the downstream part of the inlet 
slit give the appearance of a step in the tube wall in figures 13 to 15. In fact the 
circular contour of the tube is faithfully maintained throughout. It may also be 
noted that these figures cover the full length (425 mm) of the tube. As the rate of air 
injection is reduced, a clear progression is evident from a large-diameter, more 
or less cylindrical, core on the surface of which capillary waves are seen, to a thin 
helical core. As suggested by the analysis, the sense of the helix (wave type 1, 1, i.e. 
the a,, solution) is opposite to that of the outer swirling flow (this anti-helical wave 
structure corresponds to the waves of largest amplitude in figure 4). It is also seen, 
as was again to  be expected from the analysis, that the reduction in core diameter 
with downstream distance has important consequences for the flow, since the group 
velocity may exceed the axial flaw speed, when the core becomes sufficiently small, 
thereby permitting wave energy to propagate upstream. This phenomenon leads to 
a form of hydraulic jump, as seen in figure 13 (b)-(e), where according to the analysis 
wave energy from upstream and downstream is dissipated at  the location of a critical 
core diameter. 

The photographs in figure 14 (plate 6) are for a reduced flow rate of 2-0 1 s-l, the 
conditions otherwise being the same as those for figure 13. Except for the smoother 
appearance of the core surface, again corresponding to the appropriately longer wave- 
length of the capillary waves, there is no essential difference between the two series of 
photographs . 

The photographs of figure 15 (plate 7) are for an inlet slit 100 mm in length (and 
again with the 90" elbow at the tube outlet) corresponding to K = 2-54 (compared with 
1.21 for figures 13 and 14). This set-up has the practical advantage of yielding a longer 
length of tube in which to observe not only the main anti-helical wave structure but 
also the superimposed helical waves (type 2,l) of much longer wavelength - evident, 
for example, in figure 15 (d) .  
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FIGURE 16. Wavelength-core-size relationship for asymmetric disturbances. Solid curves from 
the analysis for values of inlet-slit length L indicated. Experimental data correspond to the slit 
lengths: 0, 210mm; 0.  150mm; 0, l00mm. 

There is again good qualitative agreement between these observations of the anti- 
helical waves and the analysis, as seen in figure 16 in which the wavelength-core-size 
relationship is examined. Data for K = 1-21, 1-69 and 2.54 are plotted, corresponding 
to curves 1 , 2  and 3 respectively. The very short wavelength waves (type 1,2) predicted 
by the analysis could not be distinguished in the photographs, probably through 
being masked by the longer wavelength, larger amplitude (except near the critical 
core radius) waves of type 1 , l .  There is some indication of small amplitude waves with 
a wavelength comparable to the core diameter for the largest cores (see, for example, 
figures 13a, 14a and 15a) which could belong to type 2,2 .  However, only waves of 
type 1,  1 could be identified unambiguously and therefore only data for this type are 
compred with the analysis. In  this case, the data confirm both the general shape of 
the (-R curves and also the trend with K .  

The authors gratefully acknowledge the assistance of Mr N. Zehnder in performing 
the experiments and of Miss A. L. Larsen in printing numerous photographs for 
analysis. 
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FIGURE 10. Photographs of hollow vortex core in 25 mm contraction. 
Flow rates are: (a)  0.8 1 s-l; ( b )  1.04 1 s-l; (c )  2.8 1 s-l; ( d )  2.7 1 s-l. 
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FIGURE 1 1 .  Photographs of hollolv vortex Core in 40  mrn contraction. 
Flow rates are: (a) 2.8 1 s - l ;  ( b )  2.8 1 s- l ;  (c) 4.9 1 s-l. 

NELLER AND ESCUDTER 



FICWRE 13. P110tographs of hollow vortex core in 55 mm diameter tube. 
Inlet slit length is 210 mm; flow rate is 5 . 2  1 s-l. 
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FIGURE 14. Photographs of hollow vortex core in 55 mm diameter tube. 
Inlet-slit length is 210 mm; flow rate is 2.04 1 s-1. 

Plate 6 

FICWRE 13. P110tographs of hollow vortex core in 55 mm diameter tube. 
Inlet slit length is 210 mm; flow rate is 5 . 2  1 s-l. 
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FIGURE 15. Photographs of hollow vortex core in 55 mm diameter tube. 
Inlet-slit length is 100 mm; flow rate is 4.1 1 s-l. 
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